
Deployfish
Release 1.11.13

Chris Malek, Glenn Bach

Apr 05, 2024

USER GUIDE

1 Introduction 3

2 Installation 5

3 Tutorials 7

4 deployfish.yml Reference 25

5 Adapters and Models 61

6 Elastic Container Service 65

7 Classic Load Balancing 67

8 Application/Network Load Balancing 69

9 AWS SSM Paramter Store 71

10 Extending deployfish 73

i

ii

Deployfish, Release 1.11.13

deployfish has commands for managing the whole lifecycle of your application:

• Safely and easily create, update, destroy and restart ECS services

• Safely and easily create, update, run, schedule and unschedule ECS tasks

• Extensive support for ECS related services like load balancing, application autoscaling and service discovery

• Easily scale the number of containers in your service, optionally scaling its associated autoscaling group at the
same time

• Manage multiple environments for your task or service (test, qa, prod, etc.) in multiple AWS accounts.

• Uses AWS Parameter Store for secrets for your containers

• View the configuration and status of running ECS services

• Run a one-off command related to your service

• Easily exec through your VPC bastion host into your running containers, or ssh into a ECS container machine in
your cluster.

• Setup SSH tunnels to the private AWS resources in VPC that your service uses so that you can connect to them
from your work machine.

• Extensible! Add additional functionality through custom deployfish modules.

• Works great in CodeBuild steps in a CodePipeline based CI/CD system!

Additionally, deployfish integrates with Terraform state files so that you can use the values of terraform outputs
directly in your deployfish configurations.

USER GUIDE 1

https://www.terraform.io

Deployfish, Release 1.11.13

2 USER GUIDE

CHAPTER

ONE

INTRODUCTION

deployfish has commands for managing the whole lifecycle of your application:

• Safely and easily create, update, destroy and restart ECS services

• Safely and easily create, update, run, schedule and unschedule ECS tasks

• Extensive support for ECS related services like load balancing, application autoscaling and service discovery

• Easily scale the number of containers in your service, optionally scaling its associated autoscaling group at the
same time

• Manage multiple environments for your task or service (test, qa, prod, etc.) in multiple AWS accounts.

• Uses AWS Parameter Store for secrets for your containers

• View the configuration and status of running ECS services

• Run a one-off command related to your service

• Easily exec through your VPC bastion host into your running containers, or ssh into a ECS container machine in
your cluster.

• Setup SSH tunnels to the private AWS resources in VPC that your service uses so that you can connect to them
from your work machine.

• Extensible! Add additional functionality through custom deployfish modules.

• Works great in CodeBuild steps in a CodePipeline based CI/CD system!

Additionally, deployfish integrates with Terraform state files so that you can use the values of terraform outputs
directly in your deployfish configurations.

To use deployfish, you

• Install deployfish

• Define your tasks and services in deployfish.yml

• Use deploy to start managing your tasks and services

A simple deployfish.yml looks like this:

services:
- name: my-service
environment: prod
cluster: my-cluster
count: 2
load_balancer:
service_role_arn: arn:aws:iam::123142123547:role/ecsServiceRole

(continues on next page)

3

https://www.terraform.io

Deployfish, Release 1.11.13

(continued from previous page)

load_balancer_name: my-service-elb
container_name: my-service
container_port: 80

family: my-service
network_mode: bridge
task_role_arn: arn:aws:iam::123142123547:role/myTaskRole
containers:
- name: my-service
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/my-service:0.0.1
cpu: 128
memory: 256
ports:
- "80"

environment:
- ENVIRONMENT=prod
- ANOTHER_ENV_VAR=value
- THIRD_ENV_VAR=value

See the examples/ folder in this repository for example deployfish.yml files.

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

deployfish is a pure python package. As such, it can be installed in the usual python ways. For the following instructions,
either install it into your global python install, or use a python virtual environment to install it without polluting your
global python environment.

2.1 Install deployfish

pip install deployfish

2.2 Install AWS CLI v2

deployfish requries AWS CLI v2 for some of its functionality, notably EXEC’ing into FARGATE containers. While
AWS CLI v1 was installable via pip, AWS CLI v2 is not, so we have to do the install manually. Here’s how to set that
up on a Mac:

Uninstall any old versions of the cli
pip uninstall awscli

Deactivate any pyenv environment so we can be in the system-wide Python interpreter
cd ~

Install the new AWS CLI from brew -- it's no longer pip installable
brew update
brew install awscli

Install the Session Manager plugin
curl "https://s3.amazonaws.com/session-manager-downloads/plugin/latest/mac/
→˓sessionmanager-bundle.zip" -o "sessionmanager-bundle.zip"
unzip sessionmanager-bundle.zip
sudo ./sessionmanager-bundle/install -i /usr/local/sessionmanagerplugin -b /usr/local/
→˓bin/session-manager-plugin

If later on you have issues with EXEC’ing or with the aws command in general, check to ensure you’re getting your
global v2 version of aws instead of an old v1 one from your current virtual environment:

aws --version

If the version string shows version < 2:

5

https://python-guide-pt-br.readthedocs.io/en/latest/dev/virtualenvs/

Deployfish, Release 1.11.13

pip uninstall awscli

6 Chapter 2. Installation

CHAPTER

THREE

TUTORIALS

3.1 A Basic Service

3.1.1 Problem

In this tutorial we will configure the bare essentials. Everything in the configuration is required. Further tutorials will
look at some of the optional parameters.

The configuration below will result in a single container running in an AWS ECS cluster. The container is built from
a simple nginx based hello-world image available on http://dockerhub.com, named tutum/hello-world.

3.1.2 Setup

In order to deploy this configuration, you will need an AWS ECS cluster, containing at least one EC2 machine, on
which to run the container. You can either create a cluster named hello-world-cluster or change the cluster parameter
in the configuration file to correspond to the name of the cluster that you created.

3.1.3 Configuration

Here’s the configuration for this service:

services:
- name: hello-world-test
cluster: hello-world-cluster
count: 1
family: hello-world
containers:
- name: hello-world
image: tutum/hello-world
cpu: 128
memory: 256

AWS ECS is made up of services, tasks, and task definitions. The task definitions define the task or service. A task is
a container that runs and exits, while a service is a container that stays running, like a web server, and will be restarted
by ECS if it shuts down unexpectedly.

The configuration files you will use with deployfish are YAML based. A typical project or application will have a single
deployfish.yml file, containing all of the project’s relevant services. This initial example only defines a single service.

If you want to define additional services, you simply have to add another name to the services array, along with its
corresponding parameters:

7

http://dockerhub.com
https://hub.docker.com/r/tutum/hello-world/
https://en.wikipedia.org/wiki/YAML

Deployfish, Release 1.11.13

services:
- name: name1
cluster: cluster1
...

- name: name2
cluster: cluster2
...

Required Service Parameters

Each service contains at least the five following required parameters:

name
The name of the ECS service. In this case, it is hello-world-test. This has to be unique.

cluster
The ECS cluster that will run the resultant container.

count
The number of containers to run, which is 1 in this case.

family
The base name of the task definition. Each revision of your image will have its own task definition consisting of
the base name and the revision number. We are naming this base name hello-world.

container
This parameter defines the containers to be run.

Required Container Parameters

Each container in the service contains at least the four following required parameters:

name
The name of the container.

image
The Docker image to use. If your image is in AWS ECR, you will use the full format:

<account number>.dkr.ecr.<region>.amazonaws.com/<image>:<version>

Since we’re pulling an image from Dockerhub, we just need to supply the image name:

tutum/hello-world

cpu
The number of cpu units to reserve for the container.

memory
The hard limit of memory (in MB) available to the container.

8 Chapter 3. Tutorials

Deployfish, Release 1.11.13

3.1.4 Deploy

To deploy this service, add your configuration to the deployfish.yml file and in the same directory as your configuration
file run:

deploy create hello-world-test

If you have named your configuration file something else, you can run:

deploy -f myconfigfile.yml create hello-world-test

Assuming everything ran successfully, you should be able to see the relevant info with:

deploy info hello-world-test

If you make a change and would like to update the service run:

deploy update hello-world-test

3.2 More Funtionality

3.2.1 Problem

In A Basic Service, we looked at the essentials of a service. We hosted an nginx based hello-world web site. A
fundamental flaw with this site, though, is that it isn’t accessible from anywhere but the local Docker container, which
isn’t terribly useful. We need to open the relevant ports to make it available. We’re also going to set some environment
variables and overwrite the Docker command.

3.2.2 Setup

We just need the same basic setup that we had in the first tutorial, namely an ECS cluster of at least one EC2 machine
named hello-world-cluster

3.2.3 Configuration

Here’s the configuration file for this service:

services:
- name: hello-world-test
cluster: hello-world-cluster
count: 1
family: hello-world
containers:
- name: hello-world
image: tutum/hello-world
cpu: 128
memory: 256
ports:
- "80"

command: /usr/bin/supervisord
(continues on next page)

3.2. More Funtionality 9

Deployfish, Release 1.11.13

(continued from previous page)

environment:
- VAR1=test
- VAR2=anothervar
- DEBUG=True

Here we’ve added three new parameters - ports, command, and environment:

ports
This is a list of values, so each value begins with a dash. In our case, we are just opening up one port, so we just
have the single value, 80. This will open port 80, hosting it on a random port on the ECS cluster machine that is
hosting the container.

command
This is the Docker command that will be run when the container is started

environment
This is a list of values, so each begins with a dash. It is always in the form:

- VARIABLE=VALUE

Anything set here will be available in the environment of the running container.

Port Options

If you want to specify the port number on the ECS cluster machine that will correspond to the container’s port, you can
specify that in the form HOST_PORT:CONTAINER_PORT:

ports:
- "8000:80"

The hello-world web site will then be avialable on port 8000 of the ECS cluster machine that is hosting the container.

3.2.4 Deploy

To deploy this service, run the same command we ran in the last tutorial:

deploy create hello-world-test

3.3 Load Balancing

3.3.1 Problem

We often want to scale an application to run on more than one running container, either for performance or reliability
reasons. In this tutorial, we’ll add a load balancer to balance the load across two containers.

10 Chapter 3. Tutorials

Deployfish, Release 1.11.13

3.3.2 Setup

In addition to our basic setup from the previous tutorials, you need to create a load balancer. In this example, we’re
using an AWS Elastic Load Balancer (ELB) and naming it hello-world-elb.

3.3.3 Configuration

Here’s the configuration file for this load balanced service:

services:
- name: hello-world-test
cluster: hello-world-cluster
count: 1
family: hello-world
load_balancer:
service_role_arn: arn:aws:iam::123445564666:role/ecsServiceRole
load_balancer_name: hello-world-elb
container_name: hello-world
container_port: 80

containers:
- name: hello-world
image: tutum/hello-world
cpu: 128
memory: 256
ports:
- "80"

command: /usr/bin/supervisord
environment:
- VAR1=test
- VAR2=anothervar
- DEBUG=True

Here we’ve added the new parameter, load_balancer. This corresponds to your AWS ELB.

Load Balancer Parameters

ELB

The load_balancer parameter requires the following four parameters if you are using a classic AWS ELB:

service_role_arn
The name or full ARN of the IAM role that allows ECS to make calls to your load balancer on your behalf. You
will need to use the ARN that corresponds to your account.

load_balancer_name
The name of the ELB.

container_name
The name of the container to associate with the load balancer

container_port
The port on the container to associate with the load balancer. This port must correspond to a container port on
container container_name in your service’s task definition

3.3. Load Balancing 11

Deployfish, Release 1.11.13

ALB or NLB

AWS also offers the Application Load Balancers (ALB) and Network Load Balancers. If you are using one of those
instead of the ELB, you will still use the load_balancer parameter, but it will require target_group_arn to be specified,
rather than load_balancer_name:

target_group_arn
The full ARN of the target group to use for this service.

3.3.4 Deploy

To deploy this service, run the same command we ran in the last tutorial:

deploy create hello-world-test

To increase the number of running containers behind the load balancer to 2 instances, you can either modify the config,
setting the count to:

services:
- name: hello-world-test
cluster: hello-world-cluster
count: 2
family: hello-world
load_balancer:
...

Then running update:

deploy update hello-world-test

Or you can scale the container arbitrarily with the scale command:

deploy scale test 2

3.4 Parameter Store

• Problem

• Setup

• Configuration

– Managing Config Parameters

– Reading From The Environment

– Using Config Parameters

12 Chapter 3. Tutorials

Deployfish, Release 1.11.13

3.4.1 Problem

Most applications need some configuration. Some configuration can be passed as environment variables, but what
about passwords and other secrets? Do you want them listed in the config file? These would then be visible to anyone
who had access to your version control system. Any developer would also see all of them, including the production
passwords. AWS introduced Parameter Store as part of Systems Manager. This allows us to store encrypted passwords
and other secrets.

3.4.2 Setup

We’ll start with the same setup as the initial tutorial, just an ECS cluster.

3.4.3 Configuration

Here’s the configuration for this service:

services:
- name: hello-world-test
cluster: hello-world-cluster
count: 1
family: hello-world
containers:
- name: hello-world
image: tutum/hello-world
cpu: 128
memory: 256

config:
- VAR1=value1
- VAR2=value2
- PASSWORD1:secure=password1
- PASSWORD2:secure=password2

The new parameter here is config:

config
This is a list of values, so each begins with a dash. For an unencrypted value, it is in the form:

- VARIABLE=VALUE

For an encrypted value, you must add the secure flag:

- VARIABLE:secure=VALUE

In this format, the encrypted value will be encrypted with the default key. For better security, make a unique key
for each app and specify it in this format:

- VARIABLE:secure:arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-
→˓1234567890ab=VALUE

For more information about creating keys, see AWS Key Management Service (KMS).

3.4. Parameter Store 13

http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://aws.amazon.com/ec2/systems-manager/
https://aws.amazon.com/kms/

Deployfish, Release 1.11.13

Managing Config Parameters

In addition to deploying your services, you can also manage your config with deployfish using the config subcommand.

To view your current config in AWS, run:

deploy config show hello-world-test

To save config to AWS, run:

deploy config write hello-world-test

Reading From The Environment

You might have noticed that so far this solution is still displaying passwords in the deployfish.yml file for all the de-
velopers to see. This is not a good security practice as we’ve mentioned. The best way to deal with this is to have the
secret parameter values defined in an environment variable. You would then change the config section to be:

...
config:
- VAR1=value1
- VAR2=value2
- PASSWORD1:secure=${env.PASSWORD1}
- PASSWORD2:secure=${env.PASSWORD2}

To make this easier, deployfish allows you to pass an environment file on the command line:

deploy --env_file=config.env create hello-world-test

This file is expected to be in the format:

VARIABLE=VALUE
VARIABLE=VALUE

These variables will all be loaded into the environment, so available to read from the config parameters. You would
typically use a different file for each service.

You can also specify this file in the service definition itself:

services:
- name: hello-world-test
cluster: hello-world-cluster
count: 1
family: hello-world
env_file: config.env
...

14 Chapter 3. Tutorials

Deployfish, Release 1.11.13

Using Config Parameters

So now that we have all of these values loaded into the AWS Parameter Store, how do we use them? We’ve included a
subcommand in deployfish called entrypoint. You would define this as your entrypoint in your Dockerfile:

ENTRYPOINT ["deploy", "entrypoint"]

You would have to install deployfish in your container for this to work.

With this as your entrypoint, you will need to set the command parameter of the container to be your original entrypoint:

...
containers:
- name: hello-world
image: tutum/hello-world
cpu: 128
memory: 256
command: /usr/bin/supervisord

...

The entrypoint that is run will then be:

deploy entrypoint <command>

or in this case:

deploy entrypoint /usr/bin/supervisord

When this is run, your defined config parameters will be downloaded from AWS Parameter Store and defined locally
as environment variables, which you will then access as you would any environment variable.

If you run your docker container locally, the entrypoint subcommand will simply call the command without download-
ing anything from AWS Parameter Store. You would then use locally defined environment variables to set the various
parameter values.

3.5 Using Terraform

• Problem

• Setup

• Configuration

– The Terraform Section

– Defining an Environment

∗ Multiple Environments

∗ Terraform List and Map Outputs

• Deploy

3.5. Using Terraform 15

Deployfish, Release 1.11.13

3.5.1 Problem

If we use Terraform to build our infrastructure in AWS, we can use its outputs to populate the relevant portions of our
deployfish.yml file.

3.5.2 Setup

We’re going to presume a more sophisticated setup with an ECS cluster, an ELB, a task role to allow the container to
have rights to other AWS services, an S3 bucket, and and RDS database.We’ll also use the terraform state file that has
been uploaded to S3.

3.5.3 Configuration

The Terraform Section

Here’s the configuration file with terraform:

terraform:
statefile: 's3://hello-world-remotestate-file/hello-world-terraform-state'
lookups:
cluster_name: 'test-cluster-name'
load_balancer_name: 'test-elb-id'
task_role_arn: 'iam-role-hello-world-test-task'
rds_address: 'test-rds-address'
app_bucket: 's3-hello-world-test-bucket'

services:
- name: hello-world-test
cluster: ${terraform.cluster_name}
count: 1
load_balancer:
service_role_arn: arn:aws:iam::111122223333:role/ecsServiceRole
load_balancer_name: ${terraform.load_balancer_name}
container_name: hello-world
container_port: 80

family: hello-world
task_role_arn: ${terraform.task_role_arn}
containers:
- name: hello-world
image: tutum/hello-world
cpu: 128
memory: 256
ports:
- "80"

command: /usr/bin/supervisord
config:
- DB_NAME=hello_world
- DB_USER=hello_world_u
- DB_PASSWORD:secure=${env.DB_PASSWORD}
- DB_HOST=${terraform.rds_address}
- AWS_BUCKET=${terraform.app_bucket}

16 Chapter 3. Tutorials

https://www.terraform.io/

Deployfish, Release 1.11.13

We first declare a terraform: section in the top-level of your deployfish.yml file. The values we define in that
section are then available as a variable in services: section definitions, in the form ${terraform.variable_name}.
In the above config, we’ve defined cluster to be ${terraform.cluster_name}. When we deploy, this will be
automatically converted to:

cluster: test-cluster-name

Defining an Environment

We can take this a step further, though. Typically, we will use terraform to define all of the various environments, like
test and prod. We can define the environment in our service definition with the environment parameter:

services:
- name: hello-world-test
cluster: ${terraform.cluster_name}
environment: test
count: 1
...

We can then use this environmant value in our terraform: section:

terraform:
statefile: 's3://hello-world-remotestate-file/hello-world-terraform-state'
lookups:
cluster_name: '{environment}-cluster-name'
load_balancer_name: '{environment}-elb-id'
task_role_arn: 'iam-role-hello-world-{environment}-task'
rds_address: '{environment}-rds-address'
app_bucket: 's3-hello-world-{environment}-bucket'

...

Multiple Environments

This section can then be used for multiple service definitions under services: based on the different environments:

terraform:
statefile: 's3://hello-world-remotestate-file/hello-world-terraform-state'
lookups:
cluster_name: '{environment}-cluster-name'
load_balancer_name: '{environment}-elb-id'
task_role_arn: 'iam-role-hello-world-{environment}-task'
rds_address: '{environment}-rds-address'
app_bucket: 's3-hello-world-{environment}-bucket'

services:
- name: hello-world-test
cluster: ${terraform.cluster_name}
environment: test
count: 1
load_balancer:
service_role_arn: arn:aws:iam::111122223333:role/ecsServiceRole

(continues on next page)

3.5. Using Terraform 17

Deployfish, Release 1.11.13

(continued from previous page)

load_balancer_name: ${terraform.load_balancer_name}
container_name: hello-world
container_port: 80

family: hello-world
task_role_arn: ${terraform.task_role_arn}
containers:
- name: hello-world
image: tutum/hello-world
cpu: 128
memory: 256
ports:
- "80"

command: /usr/bin/supervisord
config:
- DB_NAME=hello_world
- DB_USER=hello_world_u
- DB_PASSWORD:secure=${env.DB_PASSWORD}
- DB_HOST=${terraform.rds_address}
- AWS_BUCKET=${terraform.app_bucket}

- name: hello-world-prod
cluster: ${terraform.cluster_name}
environment: prod
count: 1
load_balancer:
service_role_arn: arn:aws:iam::111122223333:role/ecsServiceRole
load_balancer_name: ${terraform.load_balancer_name}
container_name: hello-world
container_port: 80

family: hello-world
task_role_arn: ${terraform.task_role_arn}
containers:
- name: hello-world
image: tutum/hello-world
cpu: 256
memory: 512
ports:
- "80"

command: /usr/bin/supervisord
config:
- DB_NAME=hello_world
- DB_USER=hello_world_u
- DB_PASSWORD:secure=${env.DB_PASSWORD}
- DB_HOST=${terraform.rds_address}
- AWS_BUCKET=${terraform.app_bucket}

Here we defined both a test and prod environment. When we deploy test we will use one environment file to set the
config parameters that contains the test values, and a prod environment file to define its values.

Another advantage of specifying an envieronment, is that you can use this environment in place of the service name
when calling deploy.

18 Chapter 3. Tutorials

Deployfish, Release 1.11.13

Terraform List and Map Outputs

Terraform supports outputting lists and maps, and you can use lookups of list and map values in your service definitions:

terraform:
statefile: 's3://hello-world-remotestate-file/hello-world-terraform-state'
lookups:
cluster_name: '{environment}-cluster-name'
security_groups: 'service-security-groups'
load_balancer: 'load-balancer-config'

services:
- name: hello-world
cluster: ${terraform.cluster_name}
environment: prod
count: 1
load_balancer: ${terraform.load_balancer}
vpc_configuration:
security_groups: ${terraform.security_groups}

3.5.4 Deploy

To set the AWS Parameter Store values for test:

deploy --env_file=test.env config write test

Then for prod:

deploy --env_file=prod.env config write prod

The services are then created with:

deploy create test

and:

deploy create prod

3.6 Fargate Tutorial

3.6.1 Problem

In More Funtionality, we looked at an nginx based hello-world web site running on ECS EC2. In this tutorial we will
see how to create the same service running on ECS Fargate.

3.6. Fargate Tutorial 19

Deployfish, Release 1.11.13

3.6.2 Setup

We just need the same basic setup that we had in the first tutorial, namely an ECS cluster named hello-world-cluster,
but we will not need any EC2 instances.

3.6.3 Configuration

Here’s the configuration file for this service:

services:
- name: hello-world-test
cluster: hello-world-cluster
count: 1
family: hello-world
network_mode: awsvpc
launch_type: FARGATE
execution_role: arn:aws:iam::123142123547:role/my-task-role
cpu: 256
memory: 512
vpc_configuration:
subnets:
- subnet-12345678
- subnet-87654321

security_groups:
- sg-12345678

public_ip: ENABLED
containers:
- name: hello-world
image: tutum/hello-world
cpu: 128
memory: 256
ports:
- "80"

command: /usr/bin/supervisord
environment:
- VAR1=test
- VAR2=anothervar
- DEBUG=True

You will notice that we have added several new parameters - launch_type, execution_role, cpu, memory, and
vpc_configuration:

launch_type
This is the parameter that specifies whether the service is an EC2 service or a FARGATE service. The default
value is EC2 so you only need to specify this for a Fargate task.

execution_role
This is the task exeuction role ARN for an IAM role that allows Fargate to pull container images and publish
container logs to Amazon CloudWatch on your behalf

cpu
For Fargate tasks you are required to define the cpu at the task level, and there are specific values that are allowed.

20 Chapter 3. Tutorials

Deployfish, Release 1.11.13

CPU value

256 (.25 vCPU) 512 (.5 vCPU) 1024 (1 vCPU) 2048 (2 vCPU) 4096 (4 vCPU)

memory
For Fargate tasks you are required to define the memory at the task level, and there are specific values that are
allowed.

Memory value (MiB)

512 (0.5GB), 1024 (1GB), 2048 (2GB) 1024 (1GB), 2048 (2GB), 3072 (3GB), 4096 (4GB) 2048 (2GB),
3072 (3GB), 4096 (4GB), 5120 (5GB), 6144 (6GB), 7168 (7GB), 8192 (8GB) Between 4096 (4GB) and
16384 (16GB) in increments of 1024 (1GB) Between 8192 (8GB) and 30720 (30GB) in increments of
1024 (1GB)

vpc_configuration
The vpc configuration for any Fargate tasks requires the following four parameters:

subnets (array)
The subnets in the VPC that the task scheduler should consider for placement. Only private subnets are
supported at this time. The VPC will be determined by the subnets you specify, so if you specify multiple
subnets they must be in the same VPC.

security_groups (array)
The ID of the security group to associate with the service.

public_ip (string)
Whether to enabled or disable public IPs. Valid Values are ENABLED or DISABLED

3.6.4 Deploy

To deploy this service, run the same command we ran in the last tutorial:

deploy create hello-world-test

3.7 Advanced Features

• Architectural Assumptions

• deploy cluster

– Info

• deploy service ssh <service_name>

• deploy service exec <service_name>

3.7. Advanced Features 21

Deployfish, Release 1.11.13

3.7.1 Architectural Assumptions

A few assuptions are made as to how your VPCs are structured. It is assumed that you have a bastion host for each of
your VPCs. These bastion hosts are used to access the individual EC2 instances in your ECS clusters. We expect these
bastion hosts must also have a Name tag beginning with bastion*, like bastion-test, etc.

3.7.2 deploy cluster

The deploy cluster commands allow you to interract with the individual EC2 machines that make up your ECS
cluster. It provides three subcommands, info, run, and ssh. For many of the advanced features of deployfish, the
above assumptions have been made about your architecture that are required for them to work.

Info

The info subcommand allows you to view information about the individual EC2 systems that make up your ECS
cluster. For example:

deploy cluster info web-test

Might return the output below:

Cluster: web-test
pk : web-test
name : web-test
arn : arn:aws:ecs:us-west-2:123456789012:cluster/web-test
status : ACTIVE
instances : 6
autoscaling_group : web-test
task counts

running : 5
pending : 0

Container instances

Name Instance Type IP Address Free CPU Free Memory
---------------- --------------- ------------ ---------- -------------
ecs.web-test.b.2 t2.medium 10.0.1.1 768 102
ecs.web-test.b.1 t2.medium 10.0.1.2 1536 182
ecs.web-test.c.2 t2.medium 10.0.2.1 1408 1206
ecs.web-test.c.1 t2.medium 10.0.2.2 1024 614

Services

Name Version Desired Running Created
------------------------- --------- --------- --------- -------------------
service1 2.0.8 2 2 2021-04-02 17:29:30
service2 1.4.1 1 1 2021-04-23 11:21:39
service3 2.1.2 2 2 2020-08-19 09:33:12

22 Chapter 3. Tutorials

Deployfish, Release 1.11.13

3.7.3 deploy service ssh <service_name>

The deploy service ssh command (alias: deploy ssh) will connect you via SSH to a system in your ECS cluster.
If you have any running containers, it will choose one of those, otherwise it will connect to a random one. This is useful
for debugging:

ssh to a container instance for the service identified by environment "test' in␣
→˓deployfish.yml
deploy service ssh test
ssh to a container instance for the service "service1" in cluster "web-test"
deploy service ssh web-test:service1

3.7.4 deploy service exec <service_name>

The deploy service exec command (alias: deploy exec) will connect you to a running container, similar to
connecting to the host running the container and running:

docker exec -it <contianer_id> /bin/bash

It will choose a random container. The command in our case would be:

exec into a container for the service identified by environment "test' in deployfish.yml
deploy service exec test
exec into a container for the service "service1" in cluster "web-test"
deploy service exec web-test:service1

3.7. Advanced Features 23

Deployfish, Release 1.11.13

24 Chapter 3. Tutorials

CHAPTER

FOUR

DEPLOYFISH.YML REFERENCE

The deployfish service config file is a YAML file defining ECS services, task definitions and one-off tasks associated
with those services.

• The default path for a deployfish configuration file is ./deployfish.yml.

• If the environment variable DEPLOYFISH_CONFIG_FILE is defined, deployfish will use that instead.

• If you pass a filename to deploy with the -f or --filename command line flag, that will be used even if
DEPLOYFISH_CONFIG_FILE is defined.

Options specified in the Dockerfile for your containers (e.g., ENTRYPOINT, CMD, ENV) are respected by default - you
don’t need to specify them again in deployfish.yml.

You can use terraform outputs in configuration values with a ${terraform.<key>} syntax - see the Interpolation
section for full details.

You can also use the values of environment variables in configuration values with a ${env.<key>} syntax - see the
Interpolation section for full details.

4.1 AWS Credentials

deployfish uses boto3 to do all its work in AWS and by default defers to boto3 credential resolution to figure out what
AWS credentials it should use. See Configuring Credentials in boto3’s documentation for details.

Alternately, you can tell deployfish specifically how to get your AWS credentials by defining an aws: section in
deployfish.yml.

4.1.1 Static credentials

Static credentials can be provided by adding an access_key and secret_key in-line in an aws: section in
deployfish.yml.

Usage:

aws:
access_key: anaccesskey
secret_key: asecretkey
region: us-west-2

If you specify static credentials in this way, they will be used instead of any credentials found in your environment.
region here is optional.

25

https://boto3.readthedocs.io
https://boto3.readthedocs.io/en/latest/guide/configuration.html#guide-configuration

Deployfish, Release 1.11.13

4.1.2 Using a profile from your AWS credentials file

You can use an AWS credentials file to specify your credentials and then set up your aws: section to use credentials
from a particular profile. The default location is $HOME/.aws/credentials on Linux and OS X. You can specify a
different location for this file via the AWS_SHARED_CREDENTIALS_FILE environment variable.

Usage:

aws:
profile: customprofile
region: us-west-2

region here is optional.

4.2 ECS Service Definition

This section contains a list of all configuration options supported by a ECS Service definition in version 1.

Services are specified in a YAML list under the top level services: key like so:

services:
- name: foobar-prod
...

- name: foobar-test
...

Unless otherwise specified, see Service Definition Parameters for help on thee options.

4.2.1 name

(String, Required) The name of the actual ECS service. name is required. The restrictions on characters in ECS services
are in play here: Up to 255 letters (uppercase and lowercase), numbers, hyphens, and underscores are allowed.

Once your service has been created, this is not changable without deleting and re-creating the service.

services:
- name: foobar-prod

4.2.2 cluster

(String, Required) The name of the actual ECS cluster in which we’ll create our service. cluster is required. This
has to exist in AWS before running deploy service create <service-name>.

services:
- name: foobar-prod
cluster: foobar-cluster

26 Chapter 4. deployfish.yml Reference

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html

Deployfish, Release 1.11.13

4.2.3 environment

(String, Optional) This is a keyword that can be used in terraform lookups (see “Interpolation”, below). It can also be
used as an alias for the service name in the deploy command.

services:
- name: foobar-prod
environment: prod

4.2.4 scheduling_strategy

(String, Optional) When we create the ECS service, configure the service to run in REPLICA or DAEMON. Default
to REPLICA.

services:
- name: foobar-prod
clsuter: foodbar-cluster
scheduling_strategy: DAEMON

See:

4.2.5 count

(Integer, Required for REPLICA scheduling strategy) When we create the ECS service, configure the service to run
this many tasks.

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2

count is only meaningful at service creation time. To change the count in an already created service, use deploy
service scale <service_name> <count>

4.2.6 maximum_percent

(Integer, Optional) During a deployment, this is the upper limit on the number of tasks that are allowed in the RUNNING
or PENDING state, as a percentage of the count. This must be configured along with minimum_healthy_percent.
If not provided will default to 200. If schdeuling strategy is set to DAMEON, it will be fixd at 100

services:
- name: foobar-prod
maximum_percent: 200

4.2. ECS Service Definition 27

Deployfish, Release 1.11.13

4.2.7 minimum_healthy_percent

(Integer, Optional) During a deployment,this is the lower limit on the number of tasks that must remain in the RUNNING
state, as a percentage of the count. This must be configured along with maximum_percent. If not provided will default
to 0.

services:
- name: foobar-prod
minimum_healthy_percent: 50

4.2.8 placement_constraints

(Optional) An array of placement constraint objects to use for tasks in your service. You can specify a maximum of 10
constraints per task (this limit includes constraints in the task definition and those specified at run time).

services:
- name: foobar-prod
placement_constraints:
- type: distinctInstance
- type: memberOf
expression: 'attribute:ecs.instance-type =~ t2.*'

4.2.9 placement_strategy

(Optional) The placement strategy objects to use for tasks in your service. You can specify a maximum of four strategy
rules per service.

services:
- name: foobar-prod
placement_strategy:
- type: random
- type: spread
field: 'attribute:ecs.availability-zone'

See Service Definition Parameters.

4.2.10 launch_type

The launch type on which to run your service. Accepted values are FARGATE or EC2. If a launch type is not specified,
EC2 is used by default.

If you use the Fargate launch type, these task parameters are not valid:

• dockerSecurityOptions

• links

• linuxParameters

• placementConstraints

• privileged

Example:

28 Chapter 4. deployfish.yml Reference

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html

Deployfish, Release 1.11.13

services:
- name: foobar-prod
launch_type: FARGATE

See Amazon ECS Launch Types.

4.2.11 enable_exec

If “true”, enable ECS Exec for the tasks on this service. If enable_exec is not specified, default to “false”.

Important: In addition to setting this to “true”, in order for ECS Exec to work, you’ll need to configure your cluster,
task role and the system on which you run deployfish as described here: Using Amazon ECS Exec for debugging.

4.2.12 vpc_configuration

If you are configuring a FARGATE task or you have tasks with the awsvpc network mode, you must specify your vpc
configuration at the task level.

deployfish won’t create the VPC, subnets or security groups for you – you’ll need to create it before you can use deploy
service create <service_name>

You’ll need to specify

• subnets: (list of strings) The subnets in the VPC that the task scheduler should consider for placement. Only
private subnets are supported at this time. The VPC will be determined by the subnets you specify, so if you
specify multiple subnets they must be in the same VPC.

• security_groups: (list of strings) The ID of the security group to associate with the service.

• public_ip: (string) Whether to enabled or disable public IPs. Valid values are ENABLED or DISABLED

Example:

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
vpc_configuration:
subnets:
- subnet-12345678
- subnet-87654321

security_groups:
- sg-12345678

public_ip: DISABLED

4.2. ECS Service Definition 29

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/launch_types.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec.html

Deployfish, Release 1.11.13

4.2.13 autoscalinggroup_name

(Optional)

If you have a dedicated EC2 AutoScaling Group for your service, you can declare it with the autoscalinggroup_name
option. This will allow you to scale the ASG up and down when you scale the service up and down with deploy
service scale <service-name> <count>.

deployfish won’t create the autoscaling group for you – you’ll need to create it before you can use deploy service
scale <service_name> <count> to manipulate it.

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
autoscalinggroup_name: foobar-asg

Alternatively, you can specify an AutoScaling Group Capacity Provider for this service, and the scaling will be taken
care of automatically.

4.2.14 volumes

(Optional)

You can define volumes that can be mounted inside your task’s containers via the volumes section of your deployfish
service definition. You only really need to do use this if you want to use a docker volume driver that is not the built in
local one – the one that allows you to mount host machinefolders into your container. To mount one of the volumes
you define here in one of your containers, see “volumes” under “Container Definitions” on this page.

Here is a fully specified example

services:
- name: foobar-prod
cluster: foobar-prod
volumes:
- name: storage_task
config:
scope: task
autoprovision: true
driver: my_vol_driver:latest

- name: storage_shared
config:
scope: shared
driver: my_vol_driver:latest
driverOpts:
opt1: value1
opt2: value2

labels:
key: value
key: value

- name: efs_storage
efs_config:
file_system_id: my-file-system-id
root_directory: my-root-directory

(continues on next page)

30 Chapter 4. deployfish.yml Reference

Deployfish, Release 1.11.13

(continued from previous page)

- name: local_storage
path: /host/path

The above defines four volumes:

• (EC2 launch type only) a task specific (not usable by other tasks) volume named storage_task that will be
autocreated and which will use the my_vol_driver:latest volume driver

• (EC2 launch type only) a shared (usable by other tasks) volume named storage that uses the docker volume
driver my_vol_driver:latest with the driver options given in the driverOpts: section (driver options are
volume driver specific) and labels given by labels.

• (Both EC2 or FARGATE launch types) a volume named efs_storage that allows you is the EFS file system
my-filesystem-id, rooted in the folder my-root-directory. Note: root_directory is optional, and if om-
mitted will be set to /.

• (Both EC2 or FARGATE launch types) a volume named local_storage that just allows you to mount /host/
path from the host machine using the builtin local volume driver. For this type of mount, you can also mount
/host/path directly via the volumes section of your container definition and not define it here.

See Using Data Volumes in Tasks.

Note: You are responsible for installing and configuring any 3rd party docker volume drivers on your ECS container
machines. The volumes section just allows you to use that driver once you’ve properly set it up and configured it.

4.2.15 service_role_arn

(Optional)

Note: You should only specify service_role_arn if you do not have the AWSServiceRoleForECS a service linked
role in your account and you are not using awsvpc network mode on your task definition. If you do have that role, ECS
will use it automatically and will not allow you to create your service until you remove service_role_arn.

The name or full Amazon Resource Name (ARN) of the IAM role that allows Amazon ECS to make calls to your load
balancer on your behalf. This parameter is only permitted if you are using a load balancer with your service and your
task definition does not use the awsvpc network mode. If you specify the role parameter, you must also specify a load
balancer object with the load_balancer parameter, below.

Example:

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
service_role_arn: arn:aws:iam::123142123547:role/ecsServiceRole
load_balancer:
load_balancer_name: foobar-prod-elb
container_name: foobar-prod
container_port: 80

See: Using Service-Linked ROles for Amazon ECS

4.2. ECS Service Definition 31

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_data_volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using-service-linked-roles.html

Deployfish, Release 1.11.13

4.2.16 load_balancer

(Optional)

If you’re going to use an ELB or an ALB with your service, configure it with a load_balancer block.

The load balancer info for the service can’t be changed after the service has been created. To change any part of the
load balancer info, you’ll need to destroy and recreate the service.

See: Service Load Balancing.

ELB

To specify that the the service is to use an ELB, you’ll need to specify

• load_balancer_name: (string) The name of the ELB.

• container_name: (string) the name of the container to associate with the load balancer

• container_port: (string) the port on the container to associate with the load balancer. This port must corre-
spond to a container port on container container_name in your service’s task definition

Example:

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
service_role_arn: arn:aws:iam::123142123547:role/ecsServiceRole
load_balancer:
load_balancer_name: foobar-prod-elb
container_name: foobar-prod
container_port: 80

deployfish won’t create the load balancer for you – you’ll need to create it before running deploy service create
<service_name>.

ALB or NLB

To specify that the the service is to use an ALB or NLB, you’ll need to specify:

• target_group_arn: (string) The full ARN of the target group to use for this service.

• container_name: (string) the name of the container to associate with the load balancer

• container_port: (string) the port on the container to associate with the load balancer. This port must corre-
spond to a container port on container container_name in your service’s task definition

Note: If you set network_mode to awsvpc or you’ve set launch_type to FARGATE, you need to configure your
ALB/NLB target group to target IP addresses, not EC2 instances. This is because tasks that use the awsvpc network
mode are associated with an elastic network interface, not an Amazon EC2 instance.

See: Service Load Balancing

deployfish won’t create the target group for you == you’ll need to create it before running deploy service create
<service_name>.

Example:

32 Chapter 4. deployfish.yml Reference

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-load-balancing.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-load-balancing.html

Deployfish, Release 1.11.13

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
service_role_arn: arn:aws:iam::123142123547:role/ecsServiceRole
load_balancer:
target_group_arn: my-target-group-arn
container_name: foobar-prod
container_port: 80

You can specify multiple target groups for your service, by placing them in a list named target_groups:

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
service_role_arn: arn:aws:iam::123142123547:role/ecsServiceRole
load_balancer:
target_groups:
- target_group_arn: my-target-group-arn-80
container_name: foobar-prod
container_port: 80

- target_group_arn: my-target-group-arn-443
container_name: foobar-prod
container_port: 443

See: Registering Multiple Target Groups with a Service

4.2.17 capacity_provider_strategy

(Optional)

Define a list of one or more capacity providers with weights for this service. Capacity providers allow the service to
control the underlying Fargate cluster or AutoScaling Group to allocate more container machines when necessary to
support your service requirements. Any capacity provider you name in your strategies must already be associated with
the cluster.

Note: capacity_provider_strategy and launch_type are mutually exclusive. Define one or the other. To use
Fargate with capacity_provider_strategy, choose either the FARGATE or FARGATE_SPOT pre-defined providers.

Example

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
capacity_provider_strategy:
- provider: foobar-cap-provider
weight: 1
base 1

- provider: foobar-cap-provider-spot
weight: 2

4.2. ECS Service Definition 33

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/register-multiple-targetgroups.html

Deployfish, Release 1.11.13

See the description of the capacityProviderStrategy parameter in the boto3 ECS create_service() documentation.

4.2.18 service_discovery

(Optional)

If you’re going to use ECS service discovery, configure it with a service_discovery block.

The service discovery info for the service can’t be changed after the service has been created. To change any part of
the service discovery info, you’ll need to destroy and recreate the service.

To use service discovery you’ll need to specify

• namespace: (string) The service discovery namespace that the new service will be associated with.

• name: (string) The name of the service discovery service

• dns_records: (list) A list of DNS records the service discovery service should create

– type: (string) The type of dns record. Valid values are A and SRV.

– ttl: (int) The ttl of the dns record.

Example:

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
service_discovery:
namespace: local
name: foobar-prod
dns_records:
type: A
ttl: 10

This would create a new service discovery service on the local Route53 private zone. The DNS would be
foobar-prod.local

See Amazon ECS Service Discovery.

4.2.19 application_scaling

(Optional)

If you want your service so scale up and down with service CPU, configure it with an application_scaling block.

Example:

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
application_scaling:

min_capacity: 2
max_capacity: 4
role_arn: arn:aws:iam::123445678901:role/ApplicationAutoscalingECSRole
scale-up:

(continues on next page)

34 Chapter 4. deployfish.yml Reference

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ecs.html#ECS.Client.create_service
https://aws.amazon.com/blogs/aws/amazon-ecs-service-discovery/

Deployfish, Release 1.11.13

(continued from previous page)

cpu: ">=60"
check_every_seconds: 60
periods: 5
cooldown: 60
scale_by: 1

scale-down:
cpu: "<=30"
check_every_seconds: 60
periods: 30
cooldown: 60
scale_by: -1

This block says that, for this service:

• There should be a minimum of 2 tasks and a maximum of 4 tasks * arn:aws:iam::123445678901:role/
ApplicationAutoscalingECSRole grants permission to start new containers for our service

• Scale our service up by one task if ECS Service Average CPU is greater than 60 percent for 300 seconds. Don’t
scale up more than once every 60 seconds.

• Scale our service down by one task if ECS Service Average CPU is less than or equal to 30 percent for 1800
seconds. Don’t scale down more than once every 60 seconds.

min_capacity

(Integer, Required) The minimum number of tasks that should be running in our service.

max_capacity

(Integer, Required) The maximum number of tasks that should be running in our service. Note that you should ensure
that you have enough resources in your cluster to actually run this many of your tasks.

role_arn

(String, Required) The name or full ARN of the IAM role that allows Application Autoscaling to muck with your
service. Your role definition should look like this:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "application-autoscaling.amazonaws.com"

},
"Action": "sts:AssumeRole"

}
]

}

And it needs an appropriate policy attached. The below policy allows the role to act on any service.

4.2. ECS Service Definition 35

Deployfish, Release 1.11.13

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "Stmt1456535218000",
"Effect": "Allow",
"Action": [

"ecs:DescribeServices",
"ecs:UpdateService"

],
"Resource": [

"*"
]

},
{

"Sid": "Stmt1456535243000",
"Effect": "Allow",
"Action": [

"cloudwatch:DescribeAlarms"
],
"Resource": [

"*"
]

}
]

}

See Amazon ECS Service Auto Scaling IAM Role.

scale-up, scale-down

(Required) You should have exactly two scaling rules sections, and they should be named precisely scale-up and
scale-down.

cpu

(String, Required) What CPU change causes this rule to be activated? Valid operators are: <=, <, >, >=. The CPU value
itself is a float.

You’ll need to put quotes around your value of cpu, else the YAML parser will freak out about the = sign.

check_every_seconds

(Integer, Required) Check the Average service CPU every this many seconds.

36 Chapter 4. deployfish.yml Reference

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/autoscale_IAM_role.html

Deployfish, Release 1.11.13

periods

(Integer, Required) The cpu test must be true for check_every_seconds * periods seconds for scaling to actually
happen.

scale_by

(Integer, Required) When it’s time to scale, scale by this number of tasks. To scale up, make the number positive; to
scale down, make it negative.

cooldown

(Integer, Required) The amount of time, in seconds, after a scaling activity completes where previous trigger-related
scaling activities can influence future scaling events.

See “Cooldown” in AWS’ PutScalingPolicy documentation.

4.2.20 family

(String, Required) When we create task definitions for this service, put them in this family. When you go to the “Task
Definitions” page in the AWS web console, what is listed under “Task Definition” is the family name.

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
family: foobar-prod-task-def

See also the AWS documentation.

4.2.21 network_mode

(String, Optional) The Docker networking mode for the containers in our task. One of: bridge, host, awsvpc or
none. If this parameter is omitted, a service is assumed to use bridge mode.

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
family: foobar-prod-task-def
network_mode: bridge

See the AWS documentation for what each of those modes are.

In order to be able to specify awsvpc as your network mode, you also need to define vpc_configuration:

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
family: foobar-prod-task-def
network_mode: awsvpc

(continues on next page)

4.2. ECS Service Definition 37

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_PutScalingPolicy.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#family
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#network_mode

Deployfish, Release 1.11.13

(continued from previous page)

vpc_configuration:
subnets:
- subnet-12345678
- subnet-87654321

security_groups:
- sg-12345678

public_ip: DISABLED

4.2.22 task_role_arn

(String, Optional) A task role ARN for an IAM role that allows the containers in the task permission to call the AWS
APIs that are specified in its associated policies on your behalf.

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
family: foobar-prod-task-def
network_mode: bridge
task_role_arn: arn:aws:iam::123142123547:role/my-task-role

deployfish won’t create the Task Role for you – you’ll need to create it before running deploy service create
<service_name>.

See also the AWS documentation, and IAM Roles For Tasks

4.2.23 execution_role

(String, Required for Fargate) A task exeuction role ARN for an IAM role that allows Fargate to pull container images
and publish container logs to Amazon CloudWatch on your behalf.:

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
family: foobar-prod-task-def
network_mode: bridge
execution_role: arn:aws:iam::123142123547:role/my-task-role

deployfish won’t create the Task Execution Role for you – you’ll need to create it before running deploy service
create <service_name>.

See also the IAM Roles For Tasks

38 Chapter 4. deployfish.yml Reference

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#task_role_arn
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html

Deployfish, Release 1.11.13

4.2.24 cpu

(Required for Fargate tasks)

If you are configuring a Fargate task, you have to specify the cpu at the task level, and there are specific values for cpu
which are supported which we describe below.

The available CPU values are:

Value Virtual CPUs
256 .25 vCPU
512 .5 vCPU
1024 1 vCPU
2048 2 vCPU
4096 4 vCPU

See also the Task Definition Parameters

4.2.25 memory

(Required for Fargate tasks)

If you are configuring a Fargate task, you have to specify the memory at the task level, and there are specific values for
memory which are supported which we describe below.

The available memory choices for a specific CPU value are:

CPU Memory Configurations
256 (.25 vCPU) 512 (0.5GB), 1024 (1GB), 2048 (2GB)
512 (.5 vCPU) 1024 (1GB), 2048 (2GB), 3072 (3GB), 4096 (4GB)
1024 (1 vCPU) 2048 (2GB), 3072 (3GB), 4096 (4GB), 5120 (5GB), 6144 (6GB), 7168 (7GB), 8192 (8GB)
2048 (2 vCPU) Between 4096 (4GB) and 16384 (16GB) in increments of 1024 (1GB)
4096 (4 vCPU) Between 8192 (8GB) and 30720 (30GB) in increments of 1024 (1GB)

See also the Task Definition Parameters

4.3 ECS Task Configuration

This section contains a list of all configuration options supported by a ECS Task definition in version 1.

Services are specified in a YAML list under the top level tasks: key like so:

tasks:
- name: foobar-prod
...

- name: foobar-test
...

4.3. ECS Task Configuration 39

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#task_size
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#task_size

Deployfish, Release 1.11.13

4.3.1 name

(String, Required) The name of the actual ECS tasks. name is required. The restrictions on characters in ECS tasks are
in play here: Up to 255 letters (uppercase and lowercase), numbers, hyphens, and underscores are allowed.

tasks:

• name: foobar-prod

4.3.2 service

(String, Option) Use the service option to associate this task with a particular service. This is used when running
deploy service service tasks <service_name>.

tasks:

• name: foobar-prod service: foobar-service-prod

4.3.3 cluster

(String, Required) The name of the actual ECS cluster in which we’ll run our task.:

tasks:
- name: foobar-prod
cluster: foobar-cluster

4.3.4 environment

(String, Optional) This is a keyword that can be used in terraform lookups (see “Interpolation”, below). It can also be
used as an alias for the task name in the deploy command.

tasks:
- name: foobar-prod
environment: prod

4.3.5 count

(Integer) When we run the ECS task, run this many instances.

tasks:
- name: foobar-prod
cluster: foobar-cluster
count: 2

40 Chapter 4. deployfish.yml Reference

Deployfish, Release 1.11.13

4.3.6 launch_type

(Required for Fargate tasks)

If you are configuring a Fargate task you must specify the launch type as FARGATE, otherwise the default value of EC2
is used.

The Fargate launch type allows you to run your containerized applications without the need to provision and manage
the backend infrastructure. Just register your task definition and Fargate launches the container for you.

If you use the Fargate launch type, the following task parameters are not valid:

• dockerSecurityOptions

• links

• linuxParameters

• placementConstraints

• privileged

Example:

tasks:
- name: foobar-prod
launch_type: FARGATE

See Amazon ECS Launch Types.

4.3.7 vpc_configuration

(Required for Fargate tasks)

If you are configuring a Fargate task, you have to specify your vpc configuration at the task level.

deployfish won’t create the vpc, subnets or security groups for you – you’ll need to create it before you can use deploy
task run <task_name>

You’ll specify

• subnets: (array) REQUIRED The subnets in the VPC that the task scheduler should consider for placement.
Only private subnets are supported at this time. The VPC will be determined by the subnets you specify, so if
you specify multiple subnets they must be in the same VPC.

• security_groups: (array) OPTIONAL The ID of the security group to associate with the task.

• public_ip: (string) OPTIONAL Whether to enabled or disable public IPs. Valid Values are ENABLED or
DISABLED

Example:

tasks:
- name: foobar-prod
cluster: foobar-cluster
count: 2
launch_type: FARGATE
vpc_configuration:
subnets:
- subnet-12345678
- subnet-87654321

(continues on next page)

4.3. ECS Task Configuration 41

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/launch_types.html

Deployfish, Release 1.11.13

(continued from previous page)

security_groups:
- sg-12345678

public_ip: ENABLED

4.3.8 volumes

(Optional)

You can define volumes that can be mounted inside your task’s containers via the volumes section of your deployfish
task definition. You only really need to do use this if you want to use a docker volume driver that is not the built in
local one – the one that allows you to mount host machinefolders into your container. To mount one of the volumes
you define here in one of your containers, see “volumes” under “Container Definitions” on this page.

Here is a fully qualfied example

tasks:
- name: foobar-prod
cluster: foobar-prod
volumes:
- name: storage_task
config:
scope: task
autoprovision: true
driver: my_vol_driver:latest

- name: storage
config:
scope: shared
driver: my_vol_driver:latest
driverOpts:
opt1: value1
opt2: value2

labels:
key: value
key: value

- name: local_storage
path: /host/path

The above defines three volumes:

• (EC2 launch type only) a task specific (not usable by other tasks) volume named storage_task that will be
autocreated and which will use the my_vol_driver:latest volume driver

• (EC2 launch type only) a shared (usable by other tasks) volume named storage that uses the docker volume
driver my_vol_driver:latest with the driver options given in the driverOpts: section (driver options are
volume driver specific) and labels given by labels.

• (Both EC2 or FARGATE launch types) a volume named local_storage that just allows you to mount /host/
path from the host machine using the builtin local volume driver. For this type of mount, you can also mount
/host/path directly via the volumes section of your container definition and not define it here.

See Using Data Volumes in Tasks.

Note: You are responsible for installing and confuring any 3rd party docker volume drivers on your ECS container

42 Chapter 4. deployfish.yml Reference

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_data_volumes.html

Deployfish, Release 1.11.13

machines. The volumes section just allows you to use that driver once you’ve properly set it up and configured it.

4.3.9 family

(String, Required) When we create task definitions for this task, put them in this family. When you go to the “Task
Definitions” page in the AWS web console, what is listed under “Task Definition” is the family name.

tasks:
- name: foobar-prod
cluster: foobar-cluster
count: 2
family: foobar-prod-task-def

See also the AWS documentation.

4.3.10 network_mode

(String, Optional) The Docker networking mode for the containers in our task. One of: bridge, host, awsvpc or
none. If this parameter is omitted, a task is assumed to use bridge mode.

tasks:
- name: foobar-prod
cluster: foobar-cluster
count: 2
family: foobar-prod-task-def
network_mode: bridge

See the AWS documentation for what each of those modes are.

4.3.11 task_role_arn

(String, Optional) A task role ARN for an IAM role that allows the containers in the task permission to call the AWS
APIs that are specified in its associated policies on your behalf.

tasks:
- name: foobar-prod
cluster: foobar-cluster
count: 2
family: foobar-prod-task-def
network_mode: bridge
task_role_arn: arn:aws:iam::123142123547:role/my-task-role

deployfish won’t create the Task Role for you – you’ll need to create it before running deploy task run
<task_name>.

See also the AWS documentation, and IAM Roles For Tasks

4.3. ECS Task Configuration 43

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#family
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#network_mode
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#task_role_arn
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

Deployfish, Release 1.11.13

4.3.12 execution_role

(String, Required for Fargate) A task exeuction role ARN for an IAM role that allows Fargate to pull container images
and publish container logs to Amazon CloudWatch on your behalf.:

tasks:
- name: foobar-prod
cluster: foobar-cluster
count: 2
family: foobar-prod-task-def
network_mode: bridge
execution_role: arn:aws:iam::123142123547:role/my-task-role

deployfish won’t create the Task Execution Role for you – you’ll need to create it before running deploy task run
<task_name>.

See also the IAM Roles For Tasks

4.3.13 cpu

(Required for Fargate tasks)

If you are configuring a Fargate task, you have to specify the cpu at the task level, and there are specific values for cpu
which are supported which we describe below.

The available CPU values are:

Value Virtual CPUs
256 .25 vCPU
512 .5 vCPU
1024 1 vCPU
2048 2 vCPU
4096 4 vCPU

See also the Task Definition Parameters

4.3.14 memory

(Required for Fargate tasks)

If you are configuring a Fargate task, you have to specify the memory at the task level, and there are specific values for
memory which are supported which we describe below.

The available memory choices for a specific CPU value are:

CPU Memory Configurations
256 (.25 vCPU) 512 (0.5GB), 1024 (1GB), 2048 (2GB)
512 (.5 vCPU) 1024 (1GB), 2048 (2GB), 3072 (3GB), 4096 (4GB)
1024 (1 vCPU) 2048 (2GB), 3072 (3GB), 4096 (4GB), 5120 (5GB), 6144 (6GB), 7168 (7GB), 8192 (8GB)
2048 (2 vCPU) Between 4096 (4GB) and 16384 (16GB) in increments of 1024 (1GB)
4096 (4 vCPU) Between 8192 (8GB) and 30720 (30GB) in increments of 1024 (1GB)

44 Chapter 4. deployfish.yml Reference

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#task_size

Deployfish, Release 1.11.13

See also the Task Definition Parameters

4.3.15 placement_constraints

(Optional) An array of placement constraint objects to use for tasks. You can specify a maximum of 10 constraints per
task (this limit includes constraints in the task definition and those specified at run time).

tasks:
- name: foobar-prod
placement_constraints:
- type: distinctInstance
- type: memberOf
expression: 'attribute:ecs.instance-type =~ t2.*'

See Task Placement Constraints.

4.3.16 placement_strategy

(Optional) The placement strategy objects to use for tasks in your service. You can specify a maximum of four strategy
rules per service.

services:
- name: foobar-prod
placement_strategy:
- type: random
- type: spread
field: 'attribute:ecs.availability-zone'

See Task Placement Strategies.

4.3.17 platform_version

(Optional) The platform version the task should run. A platform version is only specified for tasks using the Fargate
launch type. If one is not specified, the LATEST platform version is used by default.

See AWS Fargate Platform Versions.

4.3.18 group

The name of the task group to associate with the task. The default value is the family name of the task definition.

4.3.19 schedule

The scheduling expression. For example, “cron(0 20 * * ? *)” or “rate(5 minutes)”.

See Schedule Expressions for Rules.

4.3. ECS Task Configuration 45

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#task_size
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-placement-constraints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-placement-strategies.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html#fargate-platform-versions
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

Deployfish, Release 1.11.13

4.3.20 schedule_role

The Amazon Resource Name (ARN) of the IAM role associated with the schedule rule. This should just allow the
cloudwatch scheduled event to run the task. It should have a policy like:

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "iam:PassRole",
"Resource": "*"

},
{

"Sid": "Stmt1455323356000",
"Effect": "Allow",
"Action": [

"ecs:RunTask"
],
"Resource": [

"*"
]

}
]

}

4.4 Container Definitions

Define your containers within a task or service by using a containers: subsection.

containers is a list of containers like so:

services:
- name: foobar-prod
cluster: foobar-cluster
count: 2
containers:
- name: foo
image: my_repository/foo:0.0.1
cpu: 128
memory: 256

- name: bar
image: my_repository/baz:0.0.1
cpu: 256
memory: 1024

Each of the containers listed in the containers list will be added to the task definition for the service.

For each of the following attributes, see also the AWS ECS documentation.

NOTE: Each container in your service automatically gets their log configuration setup as ‘fluentd’, with logs being
sent to 127.0.0.1:24224 and being tagged with the name of the container.

46 Chapter 4. deployfish.yml Reference

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#standard_container_definition_params

Deployfish, Release 1.11.13

4.4.1 name

(String, Required) The name of the container. If you are linking multiple containers together in a task definition, the
name of one container can be entered in the links of another container to connect the containers. The restrictions on
characters in ECS container are in play here: Up to 255 letters (uppercase and lowercase), numbers, hyphens, and
underscores are allowed.

containers:
- name: foo

4.4.2 image

(String, Required) The image used to start the container. Up to 255 letters (uppercase and lowercase), numbers, hyphens,
underscores, colons, periods, forward slashes, and number signs are allowed.

For an AWS ECR repository:

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1

For a Docker hub repository:

containers:
- name: foo
image: centos:7

4.4.3 memory

(Integer, Required) The hard limit of memory (in MB) available to the container. If the container tries to exceed this
amount of memory, it is killed.

containers:
- name: foo
image: centos:7
memory: 512

4.4.4 memoryReservation

(Integer, Optional) The soft limit (in MB) of memory to reserve for the container. When system memory is under heavy
contention, Docker attempts to keep the container memory to this soft limit; however, your container can consume more
memory when it needs to, up to the hard limit specified with the memory parameter. memoryReservation must be
less than memory

containers:
- name: foo
image: centos:7
memory: 512
memoryReservation: 256

4.4. Container Definitions 47

Deployfish, Release 1.11.13

For example, if your container normally uses 128 MiB of memory, but occasionally bursts to 256 MiB of memory
for short periods of time, you can set a memoryReservation of 128 MiB, and a memory hard limit of 300 MiB. This
configuration would allow the container to only reserve 128 MiB of memory from the remaining resources on the
container instance, but also allow the container to consume more memory resources when needed.

4.4.5 cpu

(Integer, Required) The number of cpu units to reserve for the container. A container instance has 1,024 cpu units for
every CPU core.

containers:
- name: foo
image: centos:7
cpu: 128

4.4.6 ports

(List of strings, Optional) A list of port mappings for the container.

Either specify both ports (HOST:CONTAINER), or just the container port (a random host port will be chosen). You
can also specify a protocol as (HOST:CONTAINER/PROTOCOL). Note that both HOST and CONTAINER here must
be single ports, not port ranges as docker-compose.yml allows in its port definitions. PROTOCOL must be one of
‘tcp’ or ‘udp’. If no PROTOCOL is specified, we assume ‘tcp’.

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
ports:
- "80"
- "8443:443"
- "8125:8125/udp"

4.4.7 links

(List of strings, Optional) A list of names of other containers in our task definition. Adding a container name to links
allows containers to communicate with each other without the need for port mappings.

Links should be specified as CONTAINER_NAME, or CONTAINER_NAME:ALIAS.

containers:
- name: my-service
image: 123445564666.dkr.ecr.us-west-2.amazonaws.com/my-service:0.1.0
cpu: 128
memory: 256
links:
- redis
- db:database

- name: redis
image: redis:latest
cpu: 128
memory: 256

(continues on next page)

48 Chapter 4. deployfish.yml Reference

Deployfish, Release 1.11.13

(continued from previous page)

- name: db
image: mysql:5.5.57
cpu: 128
memory: 512
environment:

MYSQL_ROOT_PASSWORD: __MYSQL_ROOT_PASSWD__

4.4.8 essential

(Boolean, Optional) If the essential parameter of a container is marked as true, and that container fails or stops for any
reason, all other containers that are part of the task are stopped. If the essential parameter of a container is marked
as false, then its failure does not affect the rest of the containers in a task. If this parameter is omitted, a container is
assumed to be essential.

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
essential: true

- name: bar
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
essential: false

4.4.9 extra_hosts

(list of strings, Optional) Add hostname mappings.

containers:
- name: foo
extra_hosts:
- "somehost:162.242.195.82"
- "otherhost:50.31.209.229"

An entry with the ip address and hostname will be created in /etc/hosts inside containers for this service, e.g:

162.242.195.82 somehost
50.31.209.229 otherhost

4.4.10 entrypoint

(String, Optional) The entry point that is passed to the container. Specify it as a string and Deployintaor will split the
string into an array for you for passing to ECS.

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
entrypoint: /entrypoint.sh here are arguments

4.4. Container Definitions 49

Deployfish, Release 1.11.13

4.4.11 command

(String, Optional) The command that is passed to the container. Specify it as a string and Deployintaor will split the
string into an array for you for passing to ECS.

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
command: apachectl -DFOREGROUND

4.4.12 environment

(Optional) Add environment variables. You can use either an array or a dictionary. Any boolean values: true, false,
yes, no, need to be enclosed in quotes to ensure they are not converted to True or False by the YML parser.

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
environment:
DEBUG: 'True'
ENVIRONMENT: prod
SECERTS_BUCKET_NAME: my-secrets-bucket

- name: bar
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
environment:
- DEBUG=True
- ENVIRONMENT=prod
- SECERTS_BUCKET_NAME=my-secrets-bucket

4.4.13 ulimits

(Optional) Override the default ulimits for a container. You can either specify a single limit as an integer or soft/hard
limits as a mapping.

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
ulimits:
nproc: 65535
nofile:
soft: 65535
hard: 65535

See Task Definition Parameters: Resource Limits.

50 Chapter 4. deployfish.yml Reference

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definition_limits

Deployfish, Release 1.11.13

4.4.14 cap_add

(List of strings, Optional) List here any Linux kernel capabilities your container should have

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
cap_add:
- SYS_ADMIN
- CHOWN

Note: The capabilities should be in ALL CAPS. Valid values are given in the link below.

See Task Definition Parameters: Linux Parameters.

4.4.15 cap_drop

(List of strings, Optional) List here any Linux kernel capabilities your container should not have

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
cap_drop:
- SYS_RAWIO

Note: The capabilities should be in ALL CAPS. Valid values are given in the link below.

4.4.16 tmpfs

(Optional) The container path, mount options, and size (in MiB) of the tmpfs mount. This parameter maps to the –tmpfs
option to docker run, mount_options is optional

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
tmpfs:
- container_path: /tmpfs
size: 256
mount_options:
- defaults
- noatime

- container_path: /tmpfs_another
size: 128

See Task Definition Parameters: Linux Parameters.

4.4. Container Definitions 51

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definition_linuxparameters
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definition_linuxparameters

Deployfish, Release 1.11.13

4.4.17 dockerLabels

(Optional) Add metadata to containers using Docker labels. You can use either an array or a dictionary.

Use reverse-DNS notation to prevent your labels from conflicting with those used by other software.

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
dockerLabels:
labels:
edu.caltech.description: "Fun webapp"
edu.caltech.department: "Dept. of Redundancy Dept."
edu.caltech.label-with-empty-value: ""

- name: bar
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
dockerLabels:
- "edu.caltech.description=Fun webapp"
- "edu.caltech.department=Dept. of Redundancy Dept."
- "edu.caltech.label-with-empty-value"

4.4.18 volumes

(List of strings, Optional) Specify a path on the host machine (VOLUME:CONTAINER), or an access mode (VOL-
UME:CONTAINER:ro). The HOST and CONTAINER paths should be absolute paths.

containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
volumes:
- /host/path:/container/path
- /host/path-ro:/container/path-ro:ro

If you set the VOLUME portion of the mount to a filesystem path (e.g. “/host/path” in the above example), deployfish
will mount that folder on the host machine into your container via the local docker volume driver. You won’t need to
define the volume specifically in the volumes section in your task definition.

You can also set the VOLUME portion of the mount to the name of a volume defined in your task definition’s volumes
section

services:
- name: foobar
cluster: foobar
containers:
- name: foo
image: 123142123547.dkr.ecr.us-west-2.amazonaws.com/foo:0.0.1
volumes:
- storage:/container/path

volumes:
- name: storage
config:
scope: shared
driver: rexray/s3fs:0.11.1

52 Chapter 4. deployfish.yml Reference

Deployfish, Release 1.11.13

The above will cause the volume named storage from the docker volume driver rexray/s3fs:0.11.1 to be mounted
inside your container on /container/path

4.4.19 logging

(String and dictionary, Optional) Specify a log driver and its associated options.

To configure awslogs:

logging:
driver: awslogs
options:
awslogs-group: awslogs-mysql
awslogs-region: ap-northeast-1
awslogs-stream-prefix: awslogs-example

For fluentd:

logging:
driver: fluentd
options:
fluentd-address: 127.0.0.1:24224
tag: hello

NOTE: if you don’t provide a logging: section, no logs will be emitted from your service.

4.5 Secrets Management with AWS Parameter Store

The config: subsection of an ECS service or task is a list of parameters that are stored in the AWS Parameter Store
as part of Systems Manager. This allows us to store settings, encrypted passwords and other secrets without exposing
them to casual view in the AWS Console via the environment section of the container definition.

This is a list, so each item begins with a dash. For an unencrypted value, it is in the form:

- VARIABLE=VALUE

For an encrypted value, you must add the secure flag:

- VARIABLE:secure=VALUE

In this format, the encrypted value will be encrypted with the default key. For better security, make a unique key for
each app and specify it in this format:

- VARIABLE:secure:arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-
→˓1234567890ab=VALUE

For more information about creating keys, see AWS Key Management Service (KMS).

Here’s an example configuration:

services:
- name: hello-world-test
cluster: hello-world-cluster

(continues on next page)

4.5. Secrets Management with AWS Parameter Store 53

http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://aws.amazon.com/ec2/systems-manager/
https://aws.amazon.com/kms/

Deployfish, Release 1.11.13

(continued from previous page)

count: 1
family: hello-world
containers:
- name: hello-world
image: tutum/hello-world
cpu: 128
memory: 256

config:
- VAR1=value1
- VAR2=value2
- PASSWORD1:secure=password1
- PASSWORD2:secure=password2

4.5.1 Managing Config Parameters in AWS

In addition to deploying your services and tasks, you manage your config with deploy using the config subcommand.

Services

To see how your local values compare vs the current values of the service config in AWS, run:

deploy service config diff hello-world-test

To view your current values of the service config in AWS, run:

deploy service config show hello-world-test

To update the values of the service config to AWS, run:

deploy service config write hello-world-test

Tasks

To view your current values of the task config in AWS, run:

deploy task config show hello-world-test

To update the values of the task config to AWS, run:

deploy task config write hello-world-test

54 Chapter 4. deployfish.yml Reference

Deployfish, Release 1.11.13

4.5.2 Reading From The Environment

In practice, you do not want the deployfish.yml file to contain actual passwords, so the best practice is to have the
secret parameter values defined in an environment variable. You would then change the config section to be:

...
config:
- VAR1=value1
- VAR2=value2
- PASSWORD1:secure=${env.PASSWORD1}
- PASSWORD2:secure=${env.PASSWORD2}

See the Interpolation section for full details on how environment variable replacement in deployfish.yml works.

You typically should use a different file for each service.

4.5.3 Loading config: variables into your container environment

So now that we have all of these values loaded into the AWS Parameter Store, how do we use them? You need an
execution role.

You must provide an execution_role that has permission to get the parameter store values, then your task or service
will automatically have the parameter store values inserted into the environment.

4.6 Service Helper Tasks

In the tasks section of the service defintion, you can define helper tasks to be associated with your service and define
commands on them that you can run via deploy service task run <service> <command>.

The reason this exists is to enable us to run one-off or periodic functions (migrate datbases, clear caches, update search
indexes, do database backups or restores, etc.) for our services.

Task definitions listed in the tasks list support the same configuration options as those in the services list: family,
environment, network_mode, task_role_arn, and all the same options under containers.

4.6.1 Example

When you do a deploy service update <service_name>, deployfish automaticaly updates the task definition to
what is listed in the tasks entry for each task, and adds a docker label to the first container of the task definition for
the service for each task, recording the <family>:<revision> string of the correct task revision.

services:
- name: foobar-prod
environment: prod
cluster: foobar-prod-cluster
count: 2
service_role_arn: arn:aws:iam::123142123547:role/ecsServiceRole
load_balancer:
load_balancer_name: foobar-prod-elb
container_name: foobar
container_port: 80

family: foobar-prod
(continues on next page)

4.6. Service Helper Tasks 55

Deployfish, Release 1.11.13

(continued from previous page)

network_mode: bridge
task_role_arn: arn:aws:iam::123142123547:role/myTaskRole
execution_role: arn:aws:iam::123142123547:role/myExecutionRole
containers:
- name: foobar
image: foobar:0.0.1
cpu: 128
memory: 512
ports:
- "80"
- "443"

environment:
- ENVIRONMENT=prod
- SECRETS_BUCKET_NAME=my-secrets-bucket

tasks:
- launch_type: FARGATE
network_mode: awsvpc
vpc_configuration:
subnets:
- subnet-1234
- subnet-1235

security_groups:
- sg-12345

schedule_role: arn:aws:iam::123142123547:role/ecsEventsRole
containers:
- name: foobar
cpu: 128
memory: 256

commands:
- name: migrate
containers:
- name: foobar
command: ./manage.py migrate

- name: update_index
schedule: cron(5 * * * ? *)
containers:
- name: foobar
command: ./manage.py update_index

This example defines 2 separate new task defintions (“foobar-prod-tasks-migrate” and “foobar-prod-tasks-update-
index”) for our service “foobar-prod”. Those two task definitions implement the two available commands on our
service: migrate and update_index. These task defintions are created by starting with the Service’s task definition,
updating it with values from the top of the tasks: entry, and then further updating that with command specific setting
for each of the commands in the commands: section.

When you do deploy service update foobar-prod, deployfish will create a new task defintion for each of the
helper tasks and store their specific family:revision as tasks on the Service’s task definition. Then when you run deploy
service task run foobar-prod migrate, deployfish will:

1. Search for migrate among all the separate commands listings under tasks

2. Determine that migrate belongs to the foobar-tasks-prod task

3. Look on the active foobar-prod service task definition for the edu.caltech.foobar-helper-prod docker
label

56 Chapter 4. deployfish.yml Reference

Deployfish, Release 1.11.13

4. Use the value of that label to figure out which revision of our task to run.

5. Call the ECS RunTasks API call with that task revision.

4.7 Variable interpolation in deployfish.yml

You can use variable replacement in your service definitions to dynamically replace values from two sources: your
local shell environment and from a remote terraform state file.

4.7.1 Environmnent variable replacement

You can add ${env.<environment var>} to your service definition anywhere you want the value of the shell envi-
ronment variable <environment var>. For example, for the following deployfish.yml snippet:

services:
- name: foobar-prod
environment: prod
config:
- MY_PASSWORD=${env.MY_PASSWORD}

deployfish does not by default inherit your shell environment when doing these ${env.VAR} replacements. You
must tell deployfish how you want it to load those environment variables.

deploy –import_env command line option

If you run deploy with the --import_env option, it will import your shell environment into the deployfish environ-
ment. Then anything you’ve defined in your shell environment will be available for ${env.VAR} replacements.

Example:

deploy --import_env <subcommand> [options]

deploy –env_file command line option

deploy also supports declaring environment variables in a file instead of having to actually have them set in your
environment. The file should follow these rules:

• Each line should be in VAR=VAL format.

• Lines beginning with # (i.e. comments) are ignored.

• Blank lines are ignored.

• There is no special handling of quotation marks.

Example:

deploy --env_file=<filename> <subcommand> [options]

Then anything you’ve defined in <filename> defined in your shell environment will be available for ${env.VAR}
replacements.

4.7. Variable interpolation in deployfish.yml 57

Deployfish, Release 1.11.13

The “env_file” service definition option

You can also specify this environment variable file in the ECS service definition itself:

services:
- name: hello-world-test
cluster: hello-world-cluster
count: 1
family: hello-world
env_file: config.env
...

4.7.2 Terraform variable replacment

If you’re managing your AWS resources for your service with Terraform and you export your Terraform state files to
S3, or if you are using Terraform Enterprise, you can use the values of your terraform outputs as string, list, or map
values in your service definitions.

To do so, first declare a terraform top level section in your deployfish.yml file:

terraform:
statefile: 's3://terraform-remote-state/my-service-terraform-state'
lookups:
ecs_service_role: 'ecs-service-role'
cluster_name: '{service-name}-ecs-cluster-name'
elb_name: '{service-name}-elb-name'
storage_bucket: 's3-{environment}-bucket'
task_role_arn: '{service-name}-task-role-arn'
ecr_repo_url: 'ecr-repository-url'

If using Terraform Enterprise you need to provide the workspace and organization in place of the statefile:

terraform:
workspace: sample_workspace
organization: sampleOrganization
lookups:
ecs_service_role: 'ecs-service-role'
cluster_name: '{service-name}-ecs-cluster-name'
elb_name: '{service-name}-elb-name'
storage_bucket: 's3-{environment}-bucket'
task_role_arn: '{service-name}-task-role-arn'
ecr_repo_url: 'ecr-repository-url'
security_groups: '{service-name}-security-groups'
subnets: 'service-subnets'

Then, wherever you have a string, list, or map value in your service definition, you can replace that with a terraform
lookup, like so:

services:
- name: my-service
cluster: ${terraform.cluster_name}
environment: prod
count: 2

(continues on next page)

58 Chapter 4. deployfish.yml Reference

Deployfish, Release 1.11.13

(continued from previous page)

service_role_arn: ${terraform.ecs_service_role}
load_balancer:
load_balancer_name: ${terraform.elb_name}
container_name: my-service
container_port: 80

family: my-service
network_mode: bridge
task_role_arn: ${terraform.task_role_arn}
vpc_configuration:
security_groups: ${terraform.security_groups}
subnets: ${terraform.subnets}

containers:
- name: my-service
image: ${terraform.ecr_repo_url}:0.1.0
cpu: 128
memory: 256
ports:
- "80"

environment:
- S3_BUCKET=${terraform.storage_bucket}

statefile

(String, Required) The s3:// URL to your state file. For example, s3//my-statefile-bucket/my-statefile.

lookups

(Required) A dictionary of key value pairs where the keys will be used when doing string replacements in your service
definition, and the values should evaluate to a valid terraform output in your terraform state file.

You can use these replacements in the values:

• {environment}: replace with the value of the environment option for the current service

• {service-name}: replace with the name of the current service

• {cluster-name}: replace with the name of the cluster for the current service

These values are evaluated in the context of each service separately.

profile

(String, Optional) The name of the AWS CLI Named Profile to use when retrieving the statefile from S3.

See Named Profiles

4.7. Variable interpolation in deployfish.yml 59

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Deployfish, Release 1.11.13

region

(String, Optional) The AWS region in which your S3 bucket lives.

workspace

(String, Required Terraform Enterprise) The Terraform Enterprise workspace.

organization

(String, Required Terraform Enterprise) The Terraform Enterprise organization.

–tfe_token option

In order to authenticate against terraform enterprise and read the state, you need to provide an API token. This can be
either a user API token, team API token, or organization token.

deploy --tfe_token <token> <subcommand> [options]

It will also work if you specify an ATLAS_TOKEN environment variable while using the --import_env option.

deploy --import_env <subcommand> [options]

4.8 Advanced Usage: using a different AWS Profile for the statefile

It is not uncommon to of your Terraform state files in a single bucket, even if the associated Terraform templates affect
resources in many different accounts.

If this is the case with you, you can specify which AWS Credentials named profile (see Named Profiles for more
information). use to retrieve the state files by adding the profile and region settings to your terrraform: section:

terraform:
statefile: 's3://hello-world-remotestate-file/hello-world-terraform-state'
profile: configs
region: us-west-2
lookups:
cluster_name: '{environment}-cluster-name'
load_balancer_name: '{environment}-elb-id'
task_role_arn: 'iam-role-hello-world-{environment}-task'
rds_address: '{environment}-rds-address'
app_bucket: 's3-hello-world-{environment}-bucket'

This will tell deployfish that, for retrieving this statefile only, it should use the “configs” AWS profile.

60 Chapter 4. deployfish.yml Reference

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

CHAPTER

FIVE

ADAPTERS AND MODELS

5.1 Adapters: Loading a Model from configuration in deployfish.yml

Classes derived from deployfish.core.models.abstract.Model can be configured from configuration in
deployfish.yml.

1. Extract the configuration stanza for your object from deployfish.yml:

2. Generate your configued Model subclass instance by doing:

MyModel.new() does this:

1. Find the proper deployfish.core.adapter.abstract.Adapter subclass that will translate between
item_config and properly configured data for MyModel by looking in the adapter registry deployfish.
registry.importer_registry. This registry maps Adapter subclasses to deployfish.core.models.
abstract.Model subclasses.

2. Instantiate the Adapter subclass, passing in our item_config to its constructor.

3. Run MyAdapter.convert(). This will generate data, a dict formatted to look like what boto3’s describe_*
API method would return for the MyModel, and kwargs, extra configuration MyModel may need in order to
function properly.

4. Instantiate a MyModel by doing:

5. Set any other necessary attributes on instance from the data we returned above in kwargs.

Note: One of the challenges we have in constructing MyModel from deployfish.yml is that we need to ensure we
can also load MyModel purely from AWS calls. When loading an object from AWS , we want any dependent objects
(e.g. the deployfish.core.models.ecs.TaskDefinition of a deployfish.core.models.ecs.Service) to
be lazy loaded from AWS in order to reduce the API calls to only the data we need at the moment – this saves the user
from having to wait too long.

When loading an object from deployfish.yml however, we load all the dependent objects at the same time have to
provide them to the Model instance all at once, with no lazy loading.

Largely we do this with @property and @property.setter decorators. The main @property loads the data from
AWS if necessary, while the @property.setter circumvents the AWS loading.

1. Create a subclass of deployfish.core.adapters.abstract.Adapter The .__init__() for your subclass
will get passed the deployfish.yml configuration for your object, and will store it as deployfish.core.
adapters.abstract.Adapter.data. Override deployfish.core.adapters.abstract.Adapter.
convert on that subclass to use self.data to generate data, a dict that replicates what boto3 would return were
we to call the describe_* method for that object, and kwargs, keyword arguments for the object’s .new() factory
method (described below)

61

Deployfish, Release 1.11.13

. . .

5.2 Example: Loading a Service from deployfish.yml

First create all the appropriate objects from the service config in deployfish.yml.

The Adapter that handles parsing the services: entry for your service is deployfish.core.adapters.
deployfish.ServiceAdapter. It does this, in this order:

1. Build the data necessary for the data parameter to deployfish.core.models.ecs.Service.__init__ from
the service’s config.

2. If a config: section is present in the service’s config, load the list of deployfish.core.models.secrets.
Secret objects from the service’s config: section via deployfish.core.adapters.deployfish.
SecretAdapter and possibly deployfish.core.adapters.deployfish.ExternalSecretAdapter.

3. Use deployfish.core.adapters.deployfish.TaskDefinitionAdapter to create a deployfish.core.
models.ecs.TaskDefinition from the service config. This needs the secrets we created above, if any.

4. If application_scaling: section is present in the service’s config, build the Application Scaling objects,
which are:

• deployfish.core.models.appscaling.ScalableTarget (from deployfish.core.adapters.
appscaling.ECServiceScalableTargetAdapter)

• One or more deployfish.core.models.appscaling.ScalingPolicy objects (via deployfish.
core.adapters.appscaling.ECServiceScalingPolicyAdapter)

• One deployfish.core.models.cloudwatch.CloudwatchAlarm per deployfish.core.
models.appscaling.ScalingPolicy (via deployfish.core.adapters.cloudwatch.
ECServiceCPUAlarmAdapter)

5. If a service_discovery: section is present in the service’s config, build a deployfish.core.
models.service_discovery.ServiceDiscoveryService object (via deployfish.core.adapters.
service_discovery.ServiceDiscoveryServiceAdapter).

6. If a tasks: section is present in the service’s config, build configuration for one or more
deployfish.core.models.ecs.ServiceHelperTask objects (via deployfish.core.adapters.ecs.
ServiceHelperTaskAdapter, but (important) loaded in deployfish.core.models.ecs.Service.new,
not in deployfish.core.adapters.ecs.ServiceAdapter.convert – we need the fully configured
Service object in order to make the helper tasks, and that doesn’t happen until we get into Service.new().

Finally the Service object is configured.

5.3 Creating a Service

Here’s how deployfish.core.models.ecs.Service.save works when creating a service:

• If we have any deployfish.core.models.ecs.ServiceHelperTask objects, create them in AWS and save
their family:revisions on our deployfish.core.models.ecs.TaskDefinition, so that we know which
specific revision to run to get the version of the code we want.

• Create the deployfish.core.models.ecs.TaskDefinition in AWS, and save its ARN to the Service as
taskDefinition

• If we need it, create the

62 Chapter 5. Adapters and Models

Deployfish, Release 1.11.13

• deployfish.core.models.service_discovery.ServiceDiscoveryService in AWS, and
save its ARN to the service as serviceRegistries[0]['registryArn']; otherwise delete any
ServiceDiscoveryService associated with the Service.

• Create the Service in AWS

• If we need it, create the ScalingTarget, ScalingPolicy and CloudwatchAlarm objects in AWS, otherwise
delete any such that exist in AWS

5.3. Creating a Service 63

Deployfish, Release 1.11.13

64 Chapter 5. Adapters and Models

CHAPTER

SIX

ELASTIC CONTAINER SERVICE

6.1 Service

6.2 Tasks

6.3 TaskDefinition

6.4 Cluster

65

Deployfish, Release 1.11.13

66 Chapter 6. Elastic Container Service

CHAPTER

SEVEN

CLASSIC LOAD BALANCING

67

Deployfish, Release 1.11.13

68 Chapter 7. Classic Load Balancing

CHAPTER

EIGHT

APPLICATION/NETWORK LOAD BALANCING

69

Deployfish, Release 1.11.13

70 Chapter 8. Application/Network Load Balancing

CHAPTER

NINE

AWS SSM PARAMTER STORE

71

Deployfish, Release 1.11.13

72 Chapter 9. AWS SSM Paramter Store

CHAPTER

TEN

EXTENDING DEPLOYFISH

Warning: This guide no longer is accurate after our move from click to cement. We’ll update it soon.

deployfish has a modular architecture that allows you to add subcommands that have access to the internal objects
through the deployfish library. As an example, you can look at deployfish-mysql.

To get started, you’ll need to create a new Click command group:

import click
import os

from deployfish.cli import cli
from deployfish.core.models import Service
from deployfish.config import Config, needs_config

@cli.group(short_help="Manage a remote MySQL database")
def mysql():

pass

You can then add commands to that group:

@mysql.command('create', short_help="Create database and user")
@click.pass_context
@click.argument('identifier')
@needs_config
def create(ctx, identifier):

service = Service.objects.get(identifier)

host, name, user, passwd, port = _get_db_parameters(service)
root = click.prompt('DB root user')
rootpw = click.prompt('DB root password')

cmd = "/usr/bin/mysql --host={} --user={} --password={} --port={} --execute=\"create␣
→˓database {}; grant all privileges on {}.* to '{}'@'%' identified by '{}';\"".
→˓format(host, root, rootpw, port, name, name, user, passwd)

success, output = service.run_remote_script([cmd])
print success, output

As you can see, you have full access to the Service class.

To register your commands with deployfish, you’ll add an entry_points entry in your setup.py file:

73

https://github.com/datafolklabs/cement
https://github.com/caltechads/deployfish-mysql
http://click.pocoo.org

Deployfish, Release 1.11.13

entry_points={
'deployfish.command.plugins': [

'mysql = deployfish_mysql.mysql'
]

},

Then install your library with pip.

74 Chapter 10. Extending deployfish

	Introduction
	Installation
	Install deployfish
	Install AWS CLI v2

	Tutorials
	A Basic Service
	Problem
	Setup
	Configuration
	Required Service Parameters
	Required Container Parameters

	Deploy

	More Funtionality
	Problem
	Setup
	Configuration
	Port Options

	Deploy

	Load Balancing
	Problem
	Setup
	Configuration
	Load Balancer Parameters
	ELB
	ALB or NLB

	Deploy

	Parameter Store
	Problem
	Setup
	Configuration
	Managing Config Parameters
	Reading From The Environment
	Using Config Parameters

	Using Terraform
	Problem
	Setup
	Configuration
	The Terraform Section
	Defining an Environment
	Multiple Environments
	Terraform List and Map Outputs

	Deploy

	Fargate Tutorial
	Problem
	Setup
	Configuration
	CPU value
	Memory value (MiB)

	Deploy

	Advanced Features
	Architectural Assumptions
	deploy cluster
	Info

	deploy service ssh <service_name>
	deploy service exec <service_name>

	deployfish.yml Reference
	AWS Credentials
	Static credentials
	Using a profile from your AWS credentials file

	ECS Service Definition
	name
	cluster
	environment
	scheduling_strategy
	count
	maximum_percent
	minimum_healthy_percent
	placement_constraints
	placement_strategy
	launch_type
	enable_exec
	vpc_configuration
	autoscalinggroup_name
	volumes
	service_role_arn
	load_balancer
	ELB
	ALB or NLB

	capacity_provider_strategy
	service_discovery
	application_scaling
	min_capacity
	max_capacity
	role_arn
	scale-up, scale-down
	cpu
	check_every_seconds
	periods
	scale_by
	cooldown

	family
	network_mode
	task_role_arn
	execution_role
	cpu
	memory

	ECS Task Configuration
	name
	service
	cluster
	environment
	count
	launch_type
	vpc_configuration
	volumes
	family
	network_mode
	task_role_arn
	execution_role
	cpu
	memory
	placement_constraints
	placement_strategy
	platform_version
	group
	schedule
	schedule_role

	Container Definitions
	name
	image
	memory
	memoryReservation
	cpu
	ports
	links
	essential
	extra_hosts
	entrypoint
	command
	environment
	ulimits
	cap_add
	cap_drop
	tmpfs
	dockerLabels
	volumes
	logging

	Secrets Management with AWS Parameter Store
	Managing Config Parameters in AWS
	Services
	Tasks

	Reading From The Environment
	Loading config: variables into your container environment

	Service Helper Tasks
	Example

	Variable interpolation in deployfish.yml
	Environmnent variable replacement
	deploy –import_env command line option
	deploy –env_file command line option
	The “env_file” service definition option

	Terraform variable replacment
	statefile
	lookups
	profile
	region
	workspace
	organization
	–tfe_token option

	Advanced Usage: using a different AWS Profile for the statefile

	Adapters and Models
	Adapters: Loading a Model from configuration in deployfish.yml
	Example: Loading a Service from deployfish.yml
	Creating a Service

	Elastic Container Service
	Service
	Tasks
	TaskDefinition
	Cluster

	Classic Load Balancing
	Application/Network Load Balancing
	AWS SSM Paramter Store
	Extending deployfish

